Advanced oxidation processes

[CEST2019_00900] Elimination of relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process
by Torres-Palma R., Serna-Galvis E., Hernández F., Botero-Coy A.M., Moncayo-Lasso A., Silva-Agredo J.

In this work conventional biological treatment was applied to raw HWW. After 36h, such process mainly removed biodegradable substances, but had a limited action on the pharmaceuticals. The resultant biotreated water was submitted to the sonochemical process (375 kHz and 88 W L-1, 1.5 h), which due to its chemical (i.e., radical attacks) and physical (i.e., suspended solids disaggregation) effects induced a considerable pharmaceuticals degradation (pondered removal: 58.82%), demonstrating the complementarity of the proposed combination.

Session: 17, Room: E, at Thu, 09/05/2019 - 15:45 to 16:00
Oral presentation in Advanced oxidation processes
[CEST2019_00766] Micro-pollutants, Oxidants, Catalysts and the Water Matrix: A Harmonic Quartet or the War of the Roses?
by Mantzavinos D.

Advanced oxidation processes (AOPs, e.g. heterogeneous and homogeneous photocatalysis, electrochemical oxidation, ozonation, ultrasound irradiation, Fenton and alike reactions, and many more) have been investigated for the treatment of emerging pollutants over the past 20 years (Klavarioti et al., 2009). In particular, the occurrence of persistence micro-pollutants in various water matrices, such as pharmaceuticals and personal care products, raises serious environmental concerns since these xenobiotics can re-enter the water cycle, i.e.

Session: 5, Room: E, at Thu, 09/05/2019 - 09:00 to 09:30
Oral presentation in Advanced oxidation processes
[CEST2019_00665] Bacterial inactivation & study of damages in subcellular level during disinfection of aqueous samples
by Gounaki I., Lironi M.A., Venieri D.

The aims of the study were i) to investigate ozonation and UVA/TiO2 photocatalysis as water disinfection techniches & ii) to study damages in subcellular level, in terms of disinfection effects on cellular components (lipids, membrane and proteins). Disinfection experiments were conducted with the bacterial strains Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus.

Session: 17, Room: E, at Thu, 09/05/2019 - 16:09 to 16:12
Flash presentation in Advanced oxidation processes
[CEST2019_00652] New evidence of accelerated elimination of an emergent water pollutant by TiO2 assisted photo-oxidation
by Favier L., Laslau A., Simion A.I., Sescu A.M., Harja M., Rusu L.

This study focuses on the photocatalytic degradation of a pharmaceutic compound essentially employed for the treatment of hypertension using TiO2 as catalyst and UV-A irradiation. An efficient elimination yield of 99% was obtained after 10 minutes of irradiation at initial pollutant concentration of 5 mg/L and 1.2 g/L of catalyst. A higher mineralization yield of 87% was reached in 2h of reaction. Results showed that under all studied process conditions the target molecule was degraded according to a pseudo first order kinetics.

Session: 17, Room: E, at Thu, 09/05/2019 - 15:30 to 15:45
Oral presentation in Advanced oxidation processes
[CEST2019_00637] A practical time discretization methodology for adjusting the dosage profile in photo-Fenton processes
by Xiangwei Y., Graells M., Pérez-Moya M.

This work is aimed at systematically determining conditions enhancing the performance of Photo-Fenton processes and improving the mineralization of aqueous solutions containing emergent pollutants. Current investigations cannot provide definitive solution approaches yet and optimizing H2O2 dosage is still a challenge. Thus, this work adopts recipe optimization concepts based on time discretization for experimentally addressing the optimization of the dosage profile.

Session: 17, Room: E, at Thu, 09/05/2019 - 16:03 to 16:06
Flash presentation in Advanced oxidation processes
[CEST2019_00639] 3D printed lab-scale raceway ponds reactors applied to photo-Fenton processes
by Nasr Esfahani K., Zandi M.D., Travieso-Rodriguez J.A., Graells M., Pérez-Moya M.

In this work, two different printable materials, PLA (polylactic acid) and Timberfill were evaluated in terms of chemical resistance to photo-Fenton reactants and viability for conducting the assays in raceway pond reactors (RPRs). The modeling and testing of chemical reactors, in particular their prototyping can benefit from additive manufacturing. However, the preparation of RPRs by 3D printing to study photo-Fenton reactions has not been investigated. First, these raw materials were exposed to H2O2/Fe(II) solutions at pH=3±0.2 under sunlight to simulate photo-Fenton environment.

Session: 17, Room: E, at Thu, 09/05/2019 - 16:06 to 16:09
Flash presentation in Advanced oxidation processes
[CEST2019_00596] Laboratory scale study of photolytic and photooxidative treatment for removal of pharmaceutical residues from water matrices
by Záray Gy., Dóbé S., Gombos E., Krakkó D., Mihucz V.G.

Photolytic and photooxidative degradations of diclofenac (DICL), naproxen (NAPR) and carbamazepine (CARB) were studied applying a batch photo-reactor containing low-pressure mercury lamp emitting at 185 and 254 nm. The drugs were added in concentration of 5×10-6 M to ultra-pure water (UPW) and biologically treated wastewater (BTWW). Almost complete photolytic and photooxidative degradations were observed by VUV irradiation for DICL, NAPR and CARB in UPW within 1.0, 1,0 and 1.5 min, respectively.

Session: 17, Room: E, at Thu, 09/05/2019 - 15:15 to 15:30
Oral presentation in Advanced oxidation processes
[CEST2019_00518] Degradation of Cylindrospermopsin using Advanced Non-Thermal Plasma Technologies
by Schneider M., Rataj R., Kolb J.F., Bláha L.

The application of non-thermal plasmas in wastewater and air purification received a lot of attention, but their potential application in drinking water treatment has scarcely been investigated. Classified as Advanced Oxidation Processes, plasmas ignited in water or at the air-water interface generate a vast range of reactive species capable of removing water contaminants.

Session: 11, Room: E, at Thu, 09/05/2019 - 12:00 to 12:15
Oral presentation in Advanced oxidation processes
[CEST2019_00533] Fluoride-free Anodization of Titanium and the Photocatalytic Behaviour of the Produced TiO2 Nanostructures
by Taylor C.M., Mattia D., Wenk J.H.

Current methods for anodizing titania to produce immobilized titanium dioxide (TiO2) photocatalyst require the use of hazardous fluoride electrolytes. A fluoride-free electrolyte anodization method was developed. The electrolytes tested in this study were both bromide- and chloride-based and contained ethylene glycol as an additive. Under optimized anodization times and temperature conditions the alternative electrolytes led to growth of stable immobilized TiO2 layers.

Session: 17, Room: E, at Thu, 09/05/2019 - 15:00 to 15:15
Oral presentation in Advanced oxidation processes
[CEST2019_00497] Cavitation Based Advanced Oxidation Processes for Wastewater Treatment – Comparison of Hydrodynamic and Sonocavitation Systems
by Boczkaj G., Gągol M., Fedorov K., Cako E.

Cavitation based advanced oxidation processes (Cav-AOPs), are a promising alternative to currently used wastewater treatment technologies. Amplified interest in this “hot” topic results in increased number of research on several aspects relating to formation of cavitation phenomena and its utilization for wastewater treatment as well as hybrid processes based of application of external oxidants effectively converted to radical species in cavitation conditions.

Session: 11, Room: E, at Thu, 09/05/2019 - 11:45 to 12:00
Oral presentation in Advanced oxidation processes
[CEST2019_00335] Wastewater treatment processes utilizing hydrodynamic cavitation
by Innocenzi V., Prisciandaro M., Veglio F.

In the present work, the potentiality of the hydrodynamic cavitation (HC) for the degradation of organic pollutants from industrial effluents has been studied. Cavitation is a phenomenon of formation, growth, collapse of microbubbles or cavities, in a few milli- to microseconds and releases large magnitude of energy in a short span of time. The main chemical effects of HC are the generation of highly reactive free radicals in the aqueous environment; it is possible to exploit these radicals for the intensification of chemical processes such as degradation of the water pollutants.

Session: 17, Room: E, at Thu, 09/05/2019 - 16:00 to 16:03
Flash presentation in Advanced oxidation processes
[CEST2019_00350] Ozonation, advanced oxidation and hydrodynamic cavitation for removal of persistant pollutants
by Čehovin M., Žgajnar Gotvajn A.

Ozone is commonly used in advanced oxidation processes (AOPs) in combinations with hydrogen peroxide (H2O2) and UV radiation (UV). Hydrodynamic cavitation (HC) has been experimentally proven to result in effects, typical of AOPs. Combinations of AOPs with O3, H2O2 and UV, and HC (with cavitation numbers less than 0.2, generated by various orifice plates and nozzles, with number of passes up to 12) were experimentally assessed on model water, containing organic matter.

Session: 11, Room: E, at Thu, 09/05/2019 - 11:30 to 11:45
Oral presentation in Advanced oxidation processes
[CEST2019_00259] Electrochemical Treatment of Landfill Leachate under Cold Climate Conditions
by Ambauen N.,Hallé C., Meyn T.

This study shows that electrochemical oxidation of landfill leachate (LL) is significantly affected by cold temperatures prevailing in Nordic climate areas. As hypothesized, the degradation of common wastewater parameters (TOC, COD) exhibited lower efficiency when low average temperature (13°C) was applied than compared to room temperature (25°C). At low temperature, 35 % of COD and 64 % of TOC were removed, compared to 69 % of COD and 74 % of TOC removal at high temperature.

Session: 5, Room: E, at Thu, 09/05/2019 - 10:15 to 10:30
Oral presentation in Advanced oxidation processes
[CEST2019_00227] UV/H2O2 coupled with adsorption for decolorization of dye mixtures in water and phytotoxic effects
by Ortega A.C., Alvarez C.F., Cardona L., Arroyave C., Aristizábal A.

The present study reported the decolorization by UV/H2O2 of three dyes and their binary and ternary mixtures in water, simulating colored effluents of the textile industry. The effect of the initial concentration of H2O2, the initial concentration of dyes and the reaction kinetics in the decolorization of textile dyes in water was studied. The efficiency of decolorization of three treatment processes was compared (UV, H2O2 and UV/H2O2).

Session: 5, Room: E, at Thu, 09/05/2019 - 10:00 to 10:15
Oral presentation in Advanced oxidation processes
[CEST2019_00228] Evaluation of phytotoxic effects and decolorization of simulated and real textile wastewaters by UV/H2O2
by Quiceno L.I., Hernández M., Cardona L., Arroyave C., Aristizábal A.

In the present study textile dyes (Methylene Blue, Eliamine Blue F, Indigo) were used as model pollutants in water (ranging from 5 – 5000 mg/L) and real wastewater containing the Indigo dye was studied. The dyes in solution and the wastewater were treated by UV/H2O2 to study the influence of the type of dye, the initial concentrations of dye, the initial concentration of H2O2, the initial pH of the solution and the irradiation time in the dye decolorization of the treated solutions.

Session: 11, Room: E, at Thu, 09/05/2019 - 12:33 to 12:36
Flash presentation in Advanced oxidation processes
[CEST2019_00206] Comparative Analysis of Chlorinated Intermediates Formed During Electrochemical and Photo(electro)catalytic Degradation of 4-Ethylphenol in Saline Media
by Brüninghoff R., Van Duijne A., Braakhuis L., Saha P., Jeremiasse A., Mei B., Mul G.

Formation of toxic by-products, such as chlorinated intermediates, is one of the major drawbacks of advanced oxidation processes for saline wastewater treatment. Here a comparative analysis of electrochemical oxidation and photocatalytic degradation of 4-Ethylphenol, a non-chlorinated starting model compound of the group of alkylphenols, is presented. Main intermediates have been identified and quantified for brackish [0.03 mol*L-1] and sea water [0.6 mol*L-1] salt concentrations representative for the salt levels in various industrial effluents.

Session: 5, Room: E, at Thu, 09/05/2019 - 09:45 to 10:00
Oral presentation in Advanced oxidation processes
[CEST2019_00064] Effect of iron catalyst on caffeine oxidation by sono-Fenton technology
by Villota N., Sardón L., Ferreiro C., Lomas J.M., Camarero L.M.

Oxidation of waters containing 100.0 mg L-1 of caffeine was conducted by a sono-Fenton treatment employing an ultrasound power of 720W at pH=3.0 and T=25°C. The catalytic action of ferrous ion was studied in a range of [Fe2+]0=0-100.0 mg L-1, using oxidant ratios of [H2O2]0=250.0 mM. The oxidation of caffeine was fitted to second order kinetic model, with the oxidation kinetic constant showing a linear dependence with iron dosage. During oxidation, the water acquired yellow-brown colour, along with an increase of turbidity and aromaticity degree.

Session: 11, Room: E, at Thu, 09/05/2019 - 12:36 to 12:39
Flash presentation in Advanced oxidation processes
[CEST2019_00070] Effect of hydrogen peroxide on caffeine oxidation by sono-Fenton technology
by Villota N., Sardón L., Ferreiro C., Lomas J.M., Camarero L.M.

Oxidation of waters containing 100.0 mg L-1 of caffeine was conducted by a sono-Fenton treatment employing an ultrasound power of 720W at pH=3.0 and T=25°C. The oxidizing action of hydrogen peroxide was studied in a range between [H2O2]0=0-250.0 mM, using iron ratios of 0.7 mol Fe2+/mol C8H10N4O2. The oxidation of caffeine was fitted to second order kinetics, obtaining removals of 98% when dosing 485 mol H2O2/mol C8H10N4O2. During the oxidation, the water acquired a strong brown colour at the same time as there was a strong increase in turbidity and degree of aromaticity.

Session: 11, Room: E, at Thu, 09/05/2019 - 12:39 to 12:42
Flash presentation in Advanced oxidation processes
[CEST2019_00071] Changes of dissolved oxygen during the caffeine oxidation by photo-Fenton
by Villota N., Coralli I.,Lomas J.M.

The aim of this work is to analyse the changes of dissolved oxygen ([DO], mg/L) during the oxidation of caffeine waters by photo-Fenton treatment. The concentration of dosed hydrogen peroxide would be the addition of the stoichiometric [H2O2], which reacts with organic matter ([H2O2]esteq=2.0 mM), plus the concentration in excess of [H2O2]exc that decomposes, generating O2 through radical processes, according to a ratio R=0.8164 mmol H2O2/mg O2). Operating at doses lower than the stoichiometric value [H2O2]0<2.0 mM, O2 is not emitted, as there is no excessive oxidant.

Session: 11, Room: E, at Thu, 09/05/2019 - 12:15 to 12:30
Oral presentation in Advanced oxidation processes
[CEST2019_00079] Colour changes during the carbamazepine oxidation by photo-Fenton
by Villota N., Qullatein H., Lomas J.M.

Oxidation of waters containing 50.0 mg L-1 of carbamazepine was conducted by a photo-Fenton reagent employing a UV lamp of 150W, at pH=3.0 and T=40°C. The oxidising action of hydrogen peroxide was studied in a range between [H2O2]0=0-15.0 mM. When applying stoichiometric ratios of 2 mol C15H12N2O:20 mol H2O2:1.8 mol Fe2+, the maximum formation of colour (0.381 AU) is promoted.

Session: 11, Room: E, at Thu, 09/05/2019 - 12:42 to 12:45
Flash presentation in Advanced oxidation processes
[CEST2019_00014] Fenton reagent in combination with UV light and ultrasound waves applied for caffeine oxidation
by Villota N., Lomas J.M.

The oxidation of aqueous caffeine solutions ([Ca]0=100.0 mg L-1) was analyzed, operating at pH=3.0 and 25ºC using different AOPs, which combine the Fenton reagent ([H2O2]0=15.0 mM and [Fe2+]0=20.0 mg L-1) with low power UV light (15W,), medium (150W), and high (720 W). The Fenton reagent, combined with 150W UV light, was the most energetic treatment, proving that at 20 min it completely degrades caffeine and 80% of the water aromaticity.

Session: 11, Room: E, at Thu, 09/05/2019 - 12:30 to 12:33
Flash presentation in Advanced oxidation processes
[CEST2019_00015] US/H2O2 combined technology applied to the paracetamol oxidation
by Villota N., Lomas J.M.

This study analyzes the colour acquired by oxidizing paracetamol aqueous samples through the combined US/H2O2 technology. When operating with only the action of the waves [US]=1.0 kWh/mmol C8H9NO2, the water acquires progressively hue according to a ratio of 0.0004 AU/min, with a degradation output of 14%. Working under these conditions, the presence of hydroquinone, muconic acid and formic acid is evaluated. Colour formation presents a maximum intensity when water containing paracetamol is degraded using molar ratios of 1.5 mol H2O2/mol C8H9NO2.

Session: 5, Room: E, at Thu, 09/05/2019 - 09:30 to 09:45
Oral presentation in Advanced oxidation processes