Session 13 - Wastewater treatment

[CEST2019_00761] Anaerobic MBR technology for treating municipal wastewater at ambient temperatures
by Plevri A., Mamais D., Noutsopoulos C.

An innovative way to treat municipal wastewater and produce energy at the same time is anaerobic treatment. Anaerobic processes are traditionally used for high-strength wastewater or municipal sludge treatment and only recently have been applied for the treatment of low strength municipal wastewater.

Session: 13, Room: A, at Thu, 09/05/2019 - 15:45 to 16:00
Oral presentation in Wastewater treatment
[CEST2019_00763] Waste water treatment with agricultural by-products: An investigation with date pit powder
by Alghamdi A.A.

Water is very precious and inevitable for every living objects including human beings. Huge quantity of waste water is generated by us every day and there are various methods to regenerate safe and pure drinking water from these waste waters. Researchers all over the world are continuously trying to develop low cost filtration system using various adsorbents. Agricultural waste products are being used as adsorbents and gaining momentum because of various attractive factors such as easy availability, low cost, non-toxic nature etc.

Session: 13, Room: A, at Thu, 09/05/2019 - 16:00 to 16:15
Oral presentation in Wastewater treatment
[CEST2019_00679] Treatment of Slaughterhouse Wastewater Utilizing Cogon Grass (Imperata cylindrica) in a Subsurface Flow System Constructed Wetland in Zamboanga Cıty, Philippines
by Flores R., Adil J.

Natural treatment systems are gaining preference as a wastewater treatment option since it is a form of ecosystem-based adaptation to climate change. The study investigated the performance of a laboratory scale horizontal, subsurface flow constructed wetland (SSFCW) planted with cogon grass (Imperata cylindrica) in reducing the pollutant concentration of slaughterhouse wastewater in Zamboanga City, Philippines.

Session: 13, Room: A, at Thu, 09/05/2019 - 15:30 to 15:45
Oral presentation in Wastewater treatment
[CEST2019_00658] Fouling-resistant membranes prepared via fully biobased layer-by-layer self-assembly
by Shamaei L., Khorshidi B., Ayranci C., Sadrzadeh M.

A fully biobased layer-by-layer deposition method, containing kraft lignin and chitosan as the polyelectrolytes, was employed to improve the anti-fouling properties of polyethersulfone membrane. Results revealed that the water in air contact angle decreased from 70° ± 2° for the pristine membrane to 34° ± 1° for the modified double-bilayer membrane, indicating enhanced hydrophilicity. The synthesized film was ultrathin and caused a slight decrease in permeation flux of the modified membrane compared to the pristine membrane.

Session: 13, Room: A, at Thu, 09/05/2019 - 15:00 to 15:15
Oral presentation in Wastewater treatment
[CEST2019_00659] Hybrid zero liquid discharge (ZLD) membrane/chemical process for the treatment of oil sands produced water
by Mohammadtabar F., Khorshidi B., Sadrzadeh M.

In this study, the applicability of a hybrid chemical/membrane process for the treatment of the boiler blow-down (BBD) water from steam assisted gravity drainage (SAGD) operation was explored. For the chemical pre-treatment prior to the membrane filtration, another waste stream of SAGD, i.e., ion exchanger regeneration wastewater (IERW), was used as a coagulant to reduce the concentration of organic matter and silica.

Session: 13, Room: A, at Thu, 09/05/2019 - 15:15 to 15:30
Oral presentation in Wastewater treatment
[CEST2019_00560] Magnetite nanoparticles activated coal fly ash zeolites with application in waste water remediation
by Boycheva S., Miteva S., Trendafilova I., Zgureva D., Václavíková M., Popova M.

In this study, fly ash zeolites (FAZ) were synthesized by a double stage fusion-hydrothermal treatment. Magnetite nanoparticles were added to FAZ between the two synthesis stages. The obtained nanocomposites (MNP-FAZ) and their parent FAZ were studied with respect to their surface characteristics and were tested for decontamination of polluted waters. The experimentally obtained equilibrium adsorption isotherms were described applying different computational models.

Session: 13, Room: A, at Thu, 09/05/2019 - 16:30 to 16:33
Flash presentation in Wastewater treatment
[CEST2019_00434] Membrane distillation treating a petrochemical reverse osmosis concentrate
by Venzke C.D., Giacobbo A., Rodrigues M.A.S., Bernades A.M.

This study investigated the applicability of Direct Contact Membrane Distillation (DCMD) process for the treatment of a petrochemical industry effluent, intending to recover water from the concentrate produced by reverse osmosis (RO). In DCMD, the experiments were accomplished with a feed and permeate-inlet temperature of 60 °C and 20 °C, respectively.

Session: 13, Room: A, at Thu, 09/05/2019 - 16:24 to 16:27
Flash presentation in Wastewater treatment
[CEST2019_00450] Method Development for the Determination of Heavy Metals such as Copper, Iron, Manganese and Zinc in Aluminum Alloys by ICP-OES, based on wastewater analysis method
by Gkogkaki V., Karageorgis A., Pantazis K.

The determination of Heavy Metals such as Copper, Iron, Manganese and Zinc in Aluminum alloys is usually achieved following ASTM E3061-17 Method. Alternatively, for time and cost saving, the laboratory’s ΕΝ ISO 11885:2009 method for wastewater analysis was appropriately modified producing satisfactory results. Parameters such as matrix effect, wavelength, plasma conditions, calibration standards and dilution conditions of the alloy were examined for the accurate measurement of these elements in Aluminum alloys (e.g. CRMs, according to their Certified Values).

Session: 13, Room: A, at Thu, 09/05/2019 - 16:27 to 16:30
Flash presentation in Wastewater treatment
[CEST2019_00417] Use of the microalgae Chlorella Sorokiniana for municipal wastewater treatment: batch experiments
by Kotoula D., Iliopoulou A., Irakleous-Palaiologou E., Gatidou G., Aloupi M., Fountoulakis M.S., Stasinakis A.S.

Batch experiments were conducted in order to investigate the use of microalgae Chlorella sorokiniana for the treatment of different types of municipal wastewater (raw sewage, anaerobically treated wastewater, aerobically treated wastewater) and investigate the role of light and addition of ammonium on its growth. All experiments were conducted in triplicates and lasted for 7 days.

Session: 13, Room: A, at Thu, 09/05/2019 - 16:21 to 16:24
Flash presentation in Wastewater treatment
[CEST2019_00304] Biotreatment of Brewery Wastewater Using the Filamentous Cyanobacterium Leptolyngbya sp.
by Papadopoulos K.P., Economou C.N., Moustaka-Gouni M., Tekerlekopoulou A.G., Aggelis G., Vayenas D.V.

Brewery wastewater is generated from the beer brewing process in large amounts (4-8 m3 per m3 of beer produced). Brewery wastewater consists of high organic matter content, significant nitrogen and phosphorus concentrations and easily biodegraded compounds. Even though most biological treatment technologies applied to brewery wastewaters include the use of bacteria, cyanobacteria (photosynthetic microorganisms) constitute attractive means for sustainable and low cost wastewater treatment producing high biomass concentration.

Session: 13, Room: A, at Thu, 09/05/2019 - 16:15 to 16:18
Flash presentation in Wastewater treatment
[CEST2019_00307] Treatment of various agro-industrial wastewaters using electrocoagulation
by Benekos A., Papadopoulos K., Triantaphyllidou I.-E.,Tekerlekopoulou A.G., Vayenas D.V.

Greece, although not over-industrialized, faces issues connected to pollution of its water resources, as conventional wastewater treatment methods often proved ineffective at removing some pollutants such as suspended solids and pigments. Therefore, the need of developing efficient, modern anti-pollution techniques for the preservation of a viable environment is urgent as ever. Electrocoagulation (EC) is one of these widely studied, promising methods.

Session: 13, Room: A, at Thu, 09/05/2019 - 16:18 to 16:21
Flash presentation in Wastewater treatment