Session 2 - Life cycle analysis (LCA)

[CEST2019_00413] Energy and environmental aspects of distributed generation and electric-vehicle integration from a LCA perspective. A case study in Mendoza, Argentina
by Arena A.P.

The energy sector is moving from a rigid, concentrated system towards a flexible, decentralized one enabling the exchange of energy between many actors. Distributed renewable energy generation is a key element in this new system, offering many (potential) technical, environmental and economic advantages, but their intermittent character and the lack of synchronicity between demand and supply introduce new challenges to the utilities. Storage systems could help mitigating these negative issues, but they require additional costs, and incorporate new environmental problems.

Session: 2, Room: B, at Thu, 09/05/2019 - 10:15 to 10:30
Oral presentation in Life cycle analysis (LCA)
[CEST2019_00364] Life Cycle evaluation of production and utilisation pathways of coupled Anaerobic Digestion (AD) and Gasification/Pyrolysis systems using the Anaerobic Biorefinery concept.
by Curry R., Cromie T., Somerville G.

Life Cycle Analysis modelling has been applied to an operational Anaerobic Digestion (AD) plant, (utilising Cattle Slurry/Grass Silage), currently producing biogas for electricity and heat production, with digestate going to land-spreading. The aim of the research was to evaluate the environmental costs and benefits of coupling the existing plant with Gasification or Pyrolysis systems for the utilisation of digestate from the plant, producing either predominantly Syngas (Gasification) or Oils/Tars (Pyrolysis).

Session: 2, Room: B, at Thu, 09/05/2019 - 10:00 to 10:15
Oral presentation in Life cycle analysis (LCA)
[CEST2019_00152] The role of Life Cycle Assessment to measure progress towards the Circular Economy
by Corona B., Shen L.

The circular economy (CE), as opposed to the current linear economy, is seen as a sustainable economic system where the economic growth is decoupled from the resources use, through the reduction and recirculation of natural resources. In the shift towards the CE, quantifying the circularity of products and services (or their contribution to the CE) is crucial in designing policies and business strategies, and prioritizing sustainable solutions based on evidence. This study explores the role of Life Cycle Assessment (LCA) in assessing the circularity of products and services.

Session: 2, Room: B, at Thu, 09/05/2019 - 09:30 to 09:45
Oral presentation in Life cycle analysis (LCA)
[CEST2019_00156] Early-stage LCA of a novel fuel flexible CHP technology based on biomass gasification and a SOFC
by Moretti C., Ruhlin V.C., Corona B.

To mitigate climate change and reduce the consumption of fossil fuels, more efficient energy production is necessary. Combined heat and power systems (CHPs) are a key technology to reach such an objective, due to its higher energy efficiency than the separate production of heat and electricity. These environmental benefits can be enhanced by using a versatile energy source, such as biomass. The H2020 Hieff-BioPower project is developing an innovative medium-scale biomass CHP technology based on biomass gasification combined with solid oxide fuel cells (SOFC).

Session: 2, Room: B, at Thu, 09/05/2019 - 09:45 to 10:00
Oral presentation in Life cycle analysis (LCA)
[CEST2019_00109] Improvement of calculations of the total characterization factor in the Usetox model including a regional approach
by Belyanovskaya A., Laratte B., Perry N., Baranovskaya N.

The USEtox model as one of LCIA models is an instrument to characterize the human toxicity impact. The model measures the intake of metals by population with meat products. The USEtox is the only model including geographical separation and wide database with organic and nonorganic chemicals. However, the USEtox does not provide any regional information, as ecological or geological specifications of areas included into the model. There is also a lack of data about metals concentrations in the database.

Session: 2, Room: B, at Thu, 09/05/2019 - 09:15 to 09:30
Oral presentation in Life cycle analysis (LCA)
[CEST2019_00083] Conventional and organic rice production in Northern Italy: What is the (environmentally) best?
by Bacenetti J., Orsi L., Parolini M., Cavaliere A.

In this study, using the Life Cycle Assessment (LCA) approach, the environmental performances of rice production in Italy considering both conventional rice production (CRP) than organic rice production (ORP) was evaluated. Inventory data were collected by means of surveys in 69 farms located in Northern Italy, 20 for ORP and 49 for CRP.

Session: 2, Room: B, at Thu, 09/05/2019 - 09:00 to 09:15
Oral presentation in Life cycle analysis (LCA)